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Abstract
In this Letter I mainly consider a finite XXZ spin chain with periodic boundary
conditions and an odd number of sites. This system is described by the
Hamiltonian Hxxz = − ∑N

j=1{σx
j σ

x
j+1 + σ

y

j σ
y

j+1 + � σz
j σ

z
j+1}. As it turns out,

the ground state energy is proportional to the number of sites E = −3N/2 for
a special value of the asymmetry parameter � = −1/2. The trigonometric
polynomial Q(u), the zeros of which are parameters of the ground state Bethe
eigenvector, is explicitly constructed. This polynomial of degreen = (N−1)/2
satisfies the Baxter T –Q equation. Using the second independent solution of
this equation that corresponds to the same eigenvalue of the transfer matrix, it
is possible to find a derivative of the ground state energy w.r.t. the asymmetry
parameter. This derivative is closely connected with the correlation function
〈σ z

j σ
z
j+1〉 = −1/2 + 3/2N2. This correlation function is related to the average

number of spin strings for the ground state 〈Nstring〉 = 3
4 (N − 1/N). I would

like to stress that all the above simple formulae are not applicable to the case
of an even number of sites which is usually considered.

PACS numbers: 7510J, 7510

I did not care what it was all about. All I wanted to know was how to live in it.
Ernest Hemingway

About 30 years ago Baxter noticed [1] that in some exceptional cases the ground state energy
of the XYZ spin chain, which has the Hamiltonian

Hxyz = −
N∑
j=1

{Jxσ x
j σ

x
j+1 + Jyσ

y

j σ
y

j+1 + Jzσ
z
j σ

z
j+1} �σN+1 = �σ1 (1)

has the especially simple value

lim
N→∞

E/N = −(Jx + Jy + Jz) if Jx, Jy and Jz satisfy JxJy + JyJz + JzJx = 0

in the thermodynamic limit. He later noted [2], that the inversion relation gives a very simple
eigenvalue for the eight-vertex model transfer matrix that corresponds to (1). Using standard
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notation for the Boltzmann weights of the eight-vertex model we can reformulate Baxter’s
remark as follows. If the weights satisfy the condition

(a2 + ab)(b2 + ab) = (c2 + ab)(d2 + ab) (2)

then the transfer matrix has (up to a sign) eigenvalue T = (a + b)N . Consequently the
Hamiltonian (1), even for finite chains, has an exact eigenenergy of E = −N(Jx + Jy + Jz).
A natural suggestion follows. Suppose that the corresponding eigenvector is the ground state
vector, then it is probably possible to obtain interesting information for the finite chains.
However, there are some problems. It is evident that Baxter’s remark is valid for N = 1 when
both eigenvalues of the transfer matrix are T = a + b, but for N = 2, the transfer matrix does
not have the eigenvalue T = (a + b)2. For simplicity let us consider the six-vertex model
which is the trigonometric limit (d = 0) of the eight-vertex model. Hamiltonian (1) is reduced
to the XXZ Hamiltonian with a special asymmetry parameter � = −1/2:

Hxxz = −
N∑
j=1

{σx
j σ

x
j+1 + σ

y

j σ
y

j+1 − 1
2σ

z
j σ

z
j+1} �σN+1 = �σ1. (3)

Solving Baxter’s T –Q equation for N = 2 we easily find a trigonometric polynomial Q(u) of
degree 2, but the corresponding Bethe vector does not exist.

There are at least three ways to fix this problem and to obtain a simple eigenvalue in the
transfer matrix spectrum. The first two have to do with modifying system (3).

Firstly one can modify the boundary conditions. In 1987 Alcaraz et al [3] considered
an open XXZ spin chain with a special magnetic field at the boundaries. The authors carried
out an intensive investigation of the system. For � = −1/2 they found a linear dependence
between the ground state energy and the number of sites. The Hamiltonian of this chain can
be expressed with the help of elements of the Temperlay–Lieb algebra. For � = −1/2 this
algebra has the trivial one-dimensional representation. In the circumstances it is possible to
explain the simplicity of the ground state energy. At present, due to multiple investigations
in the 1990s, (see, e.g., the papers of Hinrichsen et al [4] and Martin-Delgado and Sierra [5])
this system is considered trivial. I intend to discuss all these questions in a future publication.
In the present work I limit myself to a reference to paper [6], where an exact solution of the
Baxter’s T –Q equation was found. It is of importance that this solution corresponds to the
ground state of the system.

Secondly one can apply an additional horizontal field. This field breaks the spin reversal
invariance of the original model. As a result, a lot of new Bethe states emerge. For a special
value of the field strength one finds in the spectrum of the transfer matrix the simple value
T = −(a + b)N (for even N only). The associated spin chain Hamiltonian is described by
Perk and Schultz [7]. I am indebted to Bazhanov and Baxter who informed me about this
possibility. It was investigated in [8, section 6], which is an extended version of [6].

The two above-mentioned methods deal with the trigonometric case only. I chose a third
way. As it turns out, it is enough to consider the usual XYZ (XXZ)-spin chain with periodic
boundary conditions, but with an ODD number of sites N = 2n + 1. I have checked that
for N = 3, 5, 7 the transfer matrix for the eight-vertex model has the largest eigenvalue
T = (a + b)N when the weights satisfy condition (2).

Due to technical difficulties typical for the eight-vertex model, I limit myself here to the
trigonometric case (d = 0). The existence of the above-mentioned simple eigenvalue for the
ground state energy was discovered in the trigonometric case by Alcaraz et al [25].

In this case the eight-vertex model reduces to the six-vertex model and formula (2) reduces
to c2 = a2 + ab + b2. The corresponding Hamiltonian is given by (3). The simplicity of the
ground state in this case allows one to find simple explicit formulae for some of the correlations.
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Let us consider a product of z-axis spin projection operators acting at the neighbouring
sites. One of the simplest correlations is the average of this product over the ground state

C
‖
1(�) ≡ 〈σ z

j σ
z
j+1〉. (4)

Due to translational invariance, this correlation does not depend on j . Similar correlations
related to the x and y axes do not depend on j also. Their values coincide, due to z-axis
rotational invariance. In what follows we use the notation

C⊥
1 (�) ≡ 〈σx

j σ
x
j+1〉 = 〈σy

j σ
y

j+1〉.
The simple formulae for these correlations, valid for � = −1/2 and for odd N , are the

main result of this Letter.
Firstly, let us formulate the starting point of our calculations. It is well known that the

Boltzmann weights of the six-vertex model can be conveniently parametrized by spectral
parameter u and crossing-parameter η as

a = sin (u + η/2) b = sin (u− η/2) and c = sin η. (5)

The asymmetry parameter is related to the crossing parameter via � = cos η. For the special
case u = η/2, the transfer matrix T̂ is proportional to a shift in the chain by one site and its
eigenvalues for all states with zero momentum are sinN η. It is also known that the Hamiltonian
for the XXZ spin chain is related to the logarithmic derivative of the transfer matrix w.r.t. the
spectral parameter:

Hxxz = −
N∑
j=1

{σx
j σ

x
j+1 + σ

y

j σ
y

j+1 + cos η σ z
j σ

z
j+1} = N cos η − 2 sin η

(
T̂ ′
u

T̂

)
u=η/2

. (6)

We will also use Baxter’s T –Q equation

T (u) Q(u) = sinN(u + η/2) Q(u− η) + sinN(u− η/2) Q(u + η) (7)

where T (u) and Q(u) are eigenvalues of transfer matrix T̂ and of the auxiliary matrix Q̂,
corresponding to a common eigenvector. In the trigonometric case

Q(u) =
m∏
j=1

sin (u− uj ) (8)

where uj satisfy the Bethe equation.
Firstly, we explicitly find for an odd value of N and for a fixed value of the crossing

parameter η = 2π/3 two solutions Q(u) and P(u) of equation (7) corresponding to the
hypothetical eigenvalue of the transfer matrix T (u) = (a + b)N . We argue that the Bethe
vector, constructed with the help of Q(u), corresponds to the ground state. Then, using the
result of [8], we formulate the relation between these two solutions and the derivative of the
largest eigenvalue of the transfer matrix T (u)w.r.t. η. Finally, the knowledge of this derivative
lets us find the correlation (4).

Let us momentarily fix the crossing parameter η = 2π/3 (� = −1/2) and consider
the conjectured value T = (a + b)N . Using parametrization (5), one can write this as
T (u) = sinN u. Baxter’s equation (7) for odd N takes the cyclic form

f (u) + f

(
u +

2π

3

)
+ f

(
u +

4π

3

)
= 0 (9)

where f (u) = sin2n+1 u Q(u). To solve the equation we follow [6]. Using cross invariance of
the T –Q equation and the simple structure of the transfer matrix for u = η/2, one can show
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that Q(u) is an even function and thus f (u) is an odd trigonometric polynomial of degree
3n + 1, satisfying periodicity f (u + π) = (−1)n+1 f (u). We can therefore write

f (u) = a1 sin (3n + 1)u + a2 sin (3n− 1)u + a3 sin (3n− 3)u . . . .

Equation (9) is satisfied if a3ν = 0. This condition implies

f (u) =
n∑

k=0

αk sin (1 − 3n + 6k)u.

The polynomial f (u) is divided by sin2n+1 u by definition. This fixes the coefficients αk . It is
clear that the first 2n derivatives have to be zeros for u = 0. The derivatives of even order are
trivially zeros while the odd derivatives give

n∑
k=0

αk(1 − 3n + 6k)2µ+1 = 0 µ = 0, 1, . . . , n− 1.

This system is equivalent to the condition that the relation
n∑

k=0

αk(1 − 3n + 6k)P ((1 − 3n + 6k)2) = 0 (10)

is valid for all polynomials P(x) of degree n − 1. Let us consider n polynomials of degree
n− 1:

Pr(x) =
n∏

k=1,k �=r
(x − (1 − 3n + 6k)2).

Using these polynomials in formula (10) we get the relations connecting the αr with α0. It is
possible to write the answer in terms of binomial coefficients:

f (u) = f0

n∑
k=0

(
n− 1

3
k

) (
n + 1

3
n− k

)
sin (1 − 3n + 6k)u (11)

where f0 is an arbitrary constant.
The auxiliary function g(u) = sin2n+1 uP (u) corresponding to the second independent

solution of the T –Q equation can be found by analogy:

g(u) = g0

n∑
k=0

(
n− 2

3
k

) (
n + 2

3
n− k

)
sin (2 − 3n + 6k)u. (12)

One can easily check that f (u) and g(u) satisfy the ODE

f ′′ − 6n cot 3u f ′ + (1 − 9n2)f = 0
g′′ − 6n cot 3u g′ + (4 − 9n2)g = 0.

(13)

It happens that occasionally these equations are more convenient in calculations than explicit
formulae (11) and (12).

The integer m in (8) is equal to the number of reversed spins and related to the z-axis
projection of the total spin Sz = N/2−m. The solutionQ(u) has degreem = n = (N−1)/2,
consequently the corresponding eigenvector has Sz = 1/2. In principle we can construct
this vector using QISM [9, 10]. It is also known that for the antiferromagnetic XXZ chain
with an even N the ground state has Sz = 0 [11, 12]. It can be analogically conjectured that
one of the two ground states for the case of N odd has Sz = 1/2. Note that in the interval
u ∈ (π/3, 2π/3), the weights of the six-vertex model (5) are positive. Consequently the
components of the ground state vector are non-negative due to the Perron–Frobenius theorem.
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In collaboration with Razumov [13], we have found explicit values for these components
up toN = 17. They are all positive. Hence, if one of the two ground state vectors has Sz = 1/2
then we have identified it. Further, we conjecture that the solutionQ(u)we found corresponds
to the ground state for N > 17 as well. I believe that using ODE (13) for f (u) it is possible
to describe the distribution of the Bethe parameters and to prove this conjecture.

For even N , the corresponding solution Q(u) has degree N/2 + 1 and there is no Bethe
vector that ensures the simple eigenvalue we have discussed.

Now we return to the main calculations. Firstly, we only know the largest eigenvalue of
the transfer matrix T (u) = sinN u for η = 2π/3. It is remarkable that the knowledge of the
second independent solution P(u) allows us to find the derivative of this eigenvalue w.r.t. η
and thus the simplest correlations.

Now we consider Baxter’s T –Q equation (7). It can be interpreted as a discrete version
of a second-order differential equation, so we can express its coefficients in terms of two
independent solutions [14, 15]:

sinN u = P(u + η/2)Q(u− η/2)− P(u− η/2)Q(u + η/2)

T (u) = P(u + η)Q(u− η)− P(u− η)Q(u + η).

Using these relations in a similar fashion to as in [8], we can find the T -matrix derivative w.r.t.
η:

T ′
η(u)|η=2π/3 = 3

2

{
P(u + π/3)Q′(u− π/3)− P ′(u + π/3)Q(u− π/3)

+P(u− π/3)Q′(u + π/3)− P ′(u− π/3)Q(u + π/3)
}
. (14)

The derivative of the last equation w.r.t. the spectral parameter u is

T ′′
ηu(u)|η=2π/3 = 3

2

{
P(u + π/3)Q′′(u− π/3)− P ′′(u + π/3)Q(u− π/3)

+P(u− π/3)Q′′(u + π/3)− P ′′(u− π/3)Q(u + π/3)
}
. (15)

Let us use these derivatives. Averaging (6) over the ground state we obtain the energy per
site that relates the correlations to the logarithmic derivative of the largest eigenvalue of the
transfer matrix w.r.t. spectral parameter u:

E0(η)/N = −2C⊥
1 − cos η C‖

1 = cos η − 2 sin η

N

(
T ′
u

T

)
u=η/2

. (16)

For η = 2π/3 and T (u) = sinN u this last equation is reduced to

E0/N = −2C⊥
1 (� = −1/2) + 1

2 C
‖
1(� = −1/2) = − 3

2 . (17)

It is difficult to find two unknowns via one equation. However, let us differentiate equation (16)
w.r.t. η. H is a Hermitian operator and so one may ignore the η dependence of the eigenvector.
Hence, differentiating equation (16), the matrix element of the Hamiltonian, we can ignore the
η dependence of the correlations

E′
0(η) = N sin η C‖

1 = −N sin η − 2

{
cos η

(
T ′
u

T

)
+ sin η

d

dη

(
T ′
u

T

)}
u=η/2

.

Jimbo and Miwa [16] used this method for calculation of the correlators C‖
1 and C⊥

1 in the
thermodynamic limit.

Replacing η = 2π/3 we obtain the last but one formula for the correlation:

C
‖
1(� = −1/2) = −1

3
− 2

N

d

dη

{(
T ′
u

T

)
u= η

2

}
η= 2π

3

= 1 +

(
2√
3

)N+1(
T ′
η −

√
3

N
T ′′
ηu

)
u= π

3 ,η= 2π
3

.
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The problem is solved in principle. Due to formulae (14) and (15), we can express the
correlations in terms of the two independent solutions Q(u) and P(u) which are given (up to
the factor sinN u) by the formulae (11) and (12). The final answer is

〈σ z
j σ

z
j+1〉 ≡ C

‖
1(� = −1/2) = −1

2
+

3

2(2n + 1)2
= −1

2
+

3

2N2
.

Detailed calculations will be published elsewhere.
Taking into account that the action of the operators σ z

j σ
z
j+1 depends upon the relative

orientation of the neighbouring spins, we can easily convert the last formula into a formula for
the average number of ‘strings’, i.e. clusters of spins with the same orientation:

〈Nstring〉 = 3

4

(
N − 1

N

)
.

Using equation (17), we get the second correlation:

C⊥
1 (� = −1/2) = 〈σx

j σ
x
j+1〉 = 〈σy

j σ
y

j+1〉 = 5

8
+

3

8N2
.

The obtained results can be generalized in different ways. Let us discuss some possibilities.
First of all let us note that all matrix elements of the Hamiltonian (3) are integers or

half integers. The ground state energy is a half integer as well. It is not surprising that the
normalization of the eigenvector can be chosen so that all its components are integers. This
helps us to make calculations and using Mathematica we have explicitly found eigenvectors for
N � 17. The obtained information is contained in [13]. Let us mention only one result, related
to the correlations, which are called probabilities of formation of a ferromagnetic string [17].
All data are in agreement with the conjectured formula:

〈a1 a2 · · · ak−1〉
〈a1 a2 · · · ak〉 = (2k − 2)! (2k − 1)! (2n + k)! (n− k)!

(k − 1)! (3k − 2)! (2n− k + 1)! (n + k − 1)!

where aj = (1 + σ z
j )/2

Many remarkable connections between the wavefunction components are noticeable. As
it turns out, the ratio of the largest component to the smallest one is equal to the number of ASM
(alternating sing matrices). The wonderful history of these numbers has already interweaved
with the six-vertex model (see, e.g., [18]). In all probability this is just the tip of the iceberg.

Second one can try to consider the elliptic case.
Thirdly we can consider the inhomogeneous six-vertex model.
I would like to mention that the necessity to distinguish between even and odd chains was

remarked upon by Faddeev and Takhtajan [19] for the XXX chain, Baake et al [20] for XXZ,
Bugrij [21] for the Ising model and so on. The authors of [27] derived benefit from consideration
of XXZ spin chains with an odd number of sites. As far as more recent results are concerned
I want to mention our paper [15], where it was noticed that the properties of Bethe equations
depend on the parity of spin chain length. The work of Schnack et al [26] contains numeric
investigations of the spin 1/2, 1, . . . , 5/2 XXX chain and demonstrates the peculiarities of odd
N . Finally, I would like to mention the very recent paper by Albertini [28] where the author
considers spin chains with open boundaries and stresses that antiferromagnetic quantum spin
chains can in principle have very different properties according to the parity of their length.

I would like to thank M Batchelor, R Baxter, V Bazhanov, A Belavin, A Bugrij, B Feigin,
T Miwa, G Pronko, V Pugai, A Razumov, S Sergeev, G Sierra and N Slavnov for useful
discussions. I also indebted to M Henkel for bringing [22] to my attention. In that paper the
authors mention the special features of the XXZ spin chain for � = −1/2. Finally, it is a
pleasure to thank B M McCoy for sending me a list of references relating to the derivative
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formula following (17) [29, 30]. This work is supported in part by RBRF–98–01–00070 and
INTAS–96–690.
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